
An Experimental Comparison of
Partitioning Strategies in
Distributed Graph Processing

Presented by: Noshin Nawar Sadat

26-Feb-2019

Graph Processing Systems

PAGE 2

Graph Partitioning

Graph processing systems run in distributed manner to handle
large graphs.

To distribute computations, partition graphs by assigning
graph edges or vertices to individual machines.

PAGE 3

The Problem

Plethora of graph processing systems.

Each offer their own graph partitioning strategies.

Even after user chooses a system, there are different
partitioning strategies to choose from.

PAGE 4

The Problem

Choosing the right partitioning strategy for

distributed graph processing systems

PAGE 5

Why is the problem important?

Choice of partitioning strategy affects

 Performance

 Replication factor

 Completion time (Ingress/Partitioning time, Computation time)

 Resource usage

 Memory usage

 Network I/O

PAGE 6

Paper Contributions

 Experimentally compared partitioning strategies of three
popular distributed graph processing (vertex-cut based)
systems:

 PowerGraph

 PowerLyra

 GraphX

 Presented rules of thumb to help pick partitioning strategies
within each system for different use cases.

 Implemented PowerGraph and GraphX’s strategies into
PowerLyra

PAGE 7

 PowerGraph and PowerLyra

 A local cluster of 9 machines

 EC2 consisting of 16 m4.2xlarge instances

 EC2 consisting of 25 m4.2xlarge instances

 GraphX

 Local cluster of 10 machines

Experimental Methodology : Clusters

PAGE 8

Grid requires number of
partitions to be a perfect

square.

Experimental Methodology : Datasets

 Consisted of:

 Low degree graphs (road-net-CA, road-net-USA)

 Heavy tailed graphs (LiveJournal, Enwiki-2013, Twitter)

 Power-law like graphs (UK-web)

PAGE 9

Experimental Methodology : Metrics

 Ingress time

 Computation time

 Replication factor

 System wide resource usage

 memory consumption

 CPU utilization

 network I/O usage

PAGE 10

Experimental Methodology : Applications

 PageRank

 Weakly connected components

 K-core decomposition

 Single Source Shortest Path (SSSP)

 Simple coloring

PAGE 11

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

PAGE 12

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

 Edge’s hash
= function of its vertices

 Fast

 Parallelizable

 Even edge distribution

 Creates large number of
mirrors

PAGE 12

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

 Based on a greedy heuristic

 Goal : Keep replication
factor low

 Incrementally and greedily
place edges

 Requires some information
about previous assignments

 Not a trivial strategy to
parallelize and distribute

PAGE 12

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

 Hash edges

 Restrict edge placement
based on vertex adjacency:

 Constraint set of vertex
v = S(v)

 Place edge (u,v) in partition
belonging to set S(u) S(v)

PAGE 12

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

 S(v) = all machines in the
row and column of the
machine that v hashed to

 Upper bound for
replication factor: 2 N-1

PAGE 12

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated First
(HDRF)

 Uses PDS to generate
constraint sets

 Requires ()
machines, where p is prime.

PAGE 12

Couldn’t meet requirement
for number of machines of

both Grid and PDS

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

 Similar to Oblivious

 Assigns edges by looking at
both partition size and
vertex degrees

 Prefers replicating high
degree vertices

PAGE 12

PowerGraph : Results

PAGE 13

 Random partitioning strategy consistently produces highest
replication factor.

PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

PAGE 14

PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 Low degree destinations :
hash destination vertex

 Colocate with all in-edges

 High degree destinations :
hash source vertex

 Colocate with all out-edges

PAGE 14

Gather

Apply

Scatter

GAS Model

PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 Two phases:

1. Performs edge cuts on all
vertices and updates degree
counters

2. Reassignment phase:
performs vertex cuts on the
vertices whose degree is above a
certain threshold

PAGE 14

PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 A greedy streaming edge-
cut strategy

 Three phases:

1 & 2. Same as Hybrid

3. Put low degree vertex v in
partition which has more of its
in-neighbors

- Gather locally

PAGE 14

PowerLyra : Results

PAGE 15

 Hybrid-Ginger consistently showed slower
ingress and higher memory footprint.

Natural
Applications:
Vertex gathers

from one direction
and scatters to

other directions
(e.g. PageRank)

Hybrid engine
optimized for both

local gather and
distributed gather.

GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

PAGE 16

GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hashing the source and
vertex IDs to assign edges

 Edges (u,v) and (v,u) go to
the same partition

PAGE 16

GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hashing the source and
vertex IDs in canonical
direction to assign edges

 Edges (u,v) and (v,u) do not
necessarily go to same
partition

 Similar to Random of
PowerGraph/PowerLyra

PAGE 16

GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hash all edges by their
source vertex

 Ensure all edges with the
same source are in same
partition

 Similar to PowerLyra’s
Hybrid’s low degree vertex
partitioning

PAGE 16

GraphX : Partitioning Strategies
 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Arrange all partitions into
square matrix

 Pick column on the basis of
source vertex’s hash and
the row on the basis of
destination vertex’s hash

 Ideal if number of
partitions = perfect square

 Similar to
PowerGraph/PowerLyra’s
Grid

PAGE 16

GraphX : Results

 Canonical random for low degree and high diameter graphs
(e.g. road networks)

 2D Edge Partitioning for power-law like graphs (e.g.
Enwiki-2013)

PAGE 17

PowerLyra: All Strategies

 HDRF

 1D Edge partitioning

 2D Edge partitioning

 Asymmetric Random (GraphX’s Random)

 1D-Target (new strategy)

 Hash edges by destination vertex and colocate them

PAGE 18

PowerLyra: All Strategies - Results

 No change in PowerLyra’s decision tree

 HDRF same as Oblivious

 Both Asymmetric Random and Random’s performance
were the worst

 PowerLyra’s Hybrid engine enhances 2D edge partitioning

PAGE 19

Summary

 No best fit for all situations

 Choice depends on:

 Degree of distributed graph

 Type and duration of application

 Cluster size

 Choice significantly affects resource usage and application
runtime

 Partitioning strategies tightly integrated with underlying
engine perform better.

PAGE 20

Discussion

 Why did they choose PowerGraph, PowerLyra and GraphX?

 Was leaving out the PDS partitioning strategy a good idea?

 PowerGraph can be used with both synchronous and
asynchronous engines. In the paper, they mentioned that
they used asynchronous engine for simple coloring, which
led to longer computation time and higher network I/O
usage. Why did they not use synchronous engine for it?

 Why did Hybrid-Ginger give such bad performance?

PAGE 21

Discussion

PAGE 22

