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Graph Processing Systems
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Graph Partitioning

Graph processing systems run in distributed manner to handle 
large graphs. 

To distribute computations, partition graphs by assigning 
graph edges or vertices to individual machines.
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The Problem

Plethora of graph processing systems.

Each offer their own graph partitioning strategies.

Even after user chooses a system, there are different 
partitioning strategies to choose from.
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The Problem

Choosing the right partitioning strategy for 

distributed graph processing systems
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Why is the problem important?

Choice of partitioning strategy affects

 Performance

 Replication factor

 Completion time (Ingress/Partitioning time, Computation time)

 Resource usage

 Memory usage

 Network I/O
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Paper Contributions

 Experimentally compared partitioning strategies of three 
popular distributed graph processing (vertex-cut based) 
systems:

 PowerGraph

 PowerLyra

 GraphX

 Presented rules of thumb to help pick partitioning strategies 
within each system for different use cases.

 Implemented PowerGraph and GraphX’s strategies into 
PowerLyra
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 PowerGraph and PowerLyra

 A local cluster of 9 machines 

 EC2 consisting of 16 m4.2xlarge instances

 EC2 consisting of 25 m4.2xlarge instances

 GraphX

 Local cluster of 10 machines

Experimental Methodology : Clusters
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Grid requires number of 
partitions to be a perfect 

square.



Experimental Methodology : Datasets

 Consisted of:

 Low degree graphs (road-net-CA, road-net-USA)

 Heavy tailed graphs (LiveJournal, Enwiki-2013, Twitter) 

 Power-law like graphs (UK-web) 
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Experimental Methodology : Metrics

 Ingress time 

 Computation time

 Replication factor

 System wide resource usage 

 memory consumption

 CPU utilization

 network I/O usage
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Experimental Methodology : Applications

 PageRank

 Weakly connected components

 K-core decomposition

 Single Source Shortest Path (SSSP)

 Simple coloring
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PowerGraph : Partitioning Strategies

 Random 

 Oblivious 

 Constrained

 Grid 

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)
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PowerGraph : Partitioning Strategies

 Random 

 Oblivious 

 Constrained

 Grid 

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)

 Edge’s hash 
= function of its vertices

 Fast

 Parallelizable

 Even edge distribution

 Creates large number of 
mirrors
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PowerGraph : Partitioning Strategies

 Random

 Oblivious 

 Constrained

 Grid 

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)

 Based on a greedy heuristic

 Goal : Keep replication 
factor low 

 Incrementally and greedily 
place edges 

 Requires some information 
about previous assignments

 Not a trivial strategy to 
parallelize and distribute
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PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)

 Hash edges

 Restrict edge placement 
based on vertex adjacency:

 Constraint set of vertex             
v = S(v)

 Place edge (u,v) in partition 
belonging to set S(u) S(v)
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PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)

 S(v) = all machines in the 
row and column of the 
machine that v hashed to

 Upper bound for 
replication factor:  2 N-1
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PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets
(PDS)

 High Degree replicated First 
(HDRF)

 Uses PDS to generate 
constraint sets

 Requires ( ) 
machines, where p is prime.
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Couldn’t meet requirement 
for number of machines of 

both Grid and PDS



PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)

 Similar to Oblivious 

 Assigns edges by looking at 
both partition size and 
vertex degrees

 Prefers replicating high 
degree vertices 
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PowerGraph : Results
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 Random partitioning strategy consistently produces highest 
replication factor.



PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger
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PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 Low degree destinations : 
hash destination vertex

 Colocate with all in-edges

 High degree destinations : 
hash source vertex

 Colocate with all out-edges
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Gather

Apply

Scatter

GAS Model



PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 Two phases:

1. Performs edge cuts on all 
vertices and updates degree 
counters

2. Reassignment phase: 
performs vertex cuts on the 
vertices whose degree is above a 
certain threshold
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PowerLyra : Partitioning Strategies

 Random 

 Oblivious 

 Constrained

 Grid 

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 A greedy streaming edge-
cut strategy

 Three phases:

1 & 2. Same as Hybrid

3. Put low degree vertex v in 
partition which has more of its 
in-neighbors

- Gather locally
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PowerLyra : Results
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 Hybrid-Ginger consistently showed slower
ingress and higher memory footprint.

Natural 
Applications:
Vertex gathers 

from one direction 
and scatters to 

other directions 
(e.g. PageRank)

Hybrid engine 
optimized for both 

local gather and 
distributed gather.



GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning
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GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hashing the source and 
vertex IDs to assign edges

 Edges (u,v) and (v,u) go to 
the same partition
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GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hashing the source and 
vertex IDs in canonical 
direction to assign edges 

 Edges (u,v) and (v,u) do not 
necessarily go to same 
partition

 Similar to Random of 
PowerGraph/PowerLyra
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GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hash all edges by their 
source vertex

 Ensure all edges with the 
same source are in same 
partition

 Similar to PowerLyra’s
Hybrid’s low degree vertex 
partitioning
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GraphX : Partitioning Strategies
 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Arrange all partitions into 
square matrix 

 Pick column on the basis of 
source vertex’s hash and 
the row on the basis of 
destination vertex’s hash

 Ideal if number of 
partitions = perfect square

 Similar to 
PowerGraph/PowerLyra’s
Grid
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GraphX : Results

 Canonical random for low degree and high diameter graphs 
(e.g. road networks)

 2D Edge Partitioning for power-law like graphs (e.g. 
Enwiki-2013)
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PowerLyra: All Strategies

 HDRF

 1D Edge partitioning

 2D Edge partitioning

 Asymmetric Random (GraphX’s Random)

 1D-Target (new strategy)

 Hash edges by destination vertex and colocate them
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PowerLyra: All Strategies - Results

 No change in PowerLyra’s decision tree

 HDRF same as Oblivious

 Both Asymmetric Random and Random’s performance 
were the worst

 PowerLyra’s Hybrid engine enhances 2D edge partitioning
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Summary

 No best fit for all situations

 Choice depends on:

 Degree of distributed graph

 Type and duration of application

 Cluster size

 Choice significantly affects resource usage and application 
runtime

 Partitioning strategies tightly integrated with underlying 
engine perform better. 
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Discussion

 Why did they choose PowerGraph, PowerLyra and GraphX?

 Was leaving out the PDS partitioning strategy a good idea? 

 PowerGraph can be used with both synchronous and 
asynchronous engines. In the paper, they mentioned that 
they used asynchronous engine for simple coloring, which 
led to longer computation time and higher network I/O 
usage. Why did they not use synchronous engine for it?

 Why did Hybrid-Ginger give such bad performance? 
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Discussion
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