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Graph Processing Systems
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Graph Partitioning

Graph processing systems run in distributed manner to handle 
large graphs. 

To distribute computations, partition graphs by assigning 
graph edges or vertices to individual machines.
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The Problem

Plethora of graph processing systems.

Each offer their own graph partitioning strategies.

Even after user chooses a system, there are different 
partitioning strategies to choose from.
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The Problem

Choosing the right partitioning strategy for 

distributed graph processing systems
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Why is the problem important?

Choice of partitioning strategy affects

 Performance

 Replication factor

 Completion time (Ingress/Partitioning time, Computation time)

 Resource usage

 Memory usage

 Network I/O
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Paper Contributions

 Experimentally compared partitioning strategies of three 
popular distributed graph processing (vertex-cut based) 
systems:

 PowerGraph

 PowerLyra

 GraphX

 Presented rules of thumb to help pick partitioning strategies 
within each system for different use cases.

 Implemented PowerGraph and GraphX’s strategies into 
PowerLyra
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 PowerGraph and PowerLyra

 A local cluster of 9 machines 

 EC2 consisting of 16 m4.2xlarge instances

 EC2 consisting of 25 m4.2xlarge instances

 GraphX

 Local cluster of 10 machines

Experimental Methodology : Clusters
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Grid requires number of 
partitions to be a perfect 

square.



Experimental Methodology : Datasets

 Consisted of:

 Low degree graphs (road-net-CA, road-net-USA)

 Heavy tailed graphs (LiveJournal, Enwiki-2013, Twitter) 

 Power-law like graphs (UK-web) 
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Experimental Methodology : Metrics

 Ingress time 

 Computation time

 Replication factor

 System wide resource usage 

 memory consumption

 CPU utilization

 network I/O usage
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Experimental Methodology : Applications

 PageRank

 Weakly connected components

 K-core decomposition

 Single Source Shortest Path (SSSP)

 Simple coloring
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PowerGraph : Partitioning Strategies

 Random 

 Oblivious 

 Constrained

 Grid 

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)
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PowerGraph : Partitioning Strategies

 Random 

 Oblivious 

 Constrained

 Grid 

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)

 Edge’s hash 
= function of its vertices

 Fast

 Parallelizable

 Even edge distribution

 Creates large number of 
mirrors
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PowerGraph : Partitioning Strategies

 Random

 Oblivious 

 Constrained

 Grid 

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)

 Based on a greedy heuristic

 Goal : Keep replication 
factor low 

 Incrementally and greedily 
place edges 

 Requires some information 
about previous assignments

 Not a trivial strategy to 
parallelize and distribute
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PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)

 Hash edges

 Restrict edge placement 
based on vertex adjacency:

 Constraint set of vertex             
v = S(v)

 Place edge (u,v) in partition 
belonging to set S(u) S(v)
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PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)

 S(v) = all machines in the 
row and column of the 
machine that v hashed to

 Upper bound for 
replication factor:  2 N-1
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PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets
(PDS)

 High Degree replicated First 
(HDRF)

 Uses PDS to generate 
constraint sets

 Requires ( ) 
machines, where p is prime.
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Couldn’t meet requirement 
for number of machines of 

both Grid and PDS



PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets 
(PDS)

 High Degree replicated 
First (HDRF)

 Similar to Oblivious 

 Assigns edges by looking at 
both partition size and 
vertex degrees

 Prefers replicating high 
degree vertices 
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PowerGraph : Results
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 Random partitioning strategy consistently produces highest 
replication factor.



PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger
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PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 Low degree destinations : 
hash destination vertex

 Colocate with all in-edges

 High degree destinations : 
hash source vertex

 Colocate with all out-edges
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Gather

Apply

Scatter

GAS Model



PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid 

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 Two phases:

1. Performs edge cuts on all 
vertices and updates degree 
counters

2. Reassignment phase: 
performs vertex cuts on the 
vertices whose degree is above a 
certain threshold
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PowerLyra : Partitioning Strategies

 Random 

 Oblivious 

 Constrained

 Grid 

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 A greedy streaming edge-
cut strategy

 Three phases:

1 & 2. Same as Hybrid

3. Put low degree vertex v in 
partition which has more of its 
in-neighbors

- Gather locally
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PowerLyra : Results
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 Hybrid-Ginger consistently showed slower
ingress and higher memory footprint.

Natural 
Applications:
Vertex gathers 

from one direction 
and scatters to 

other directions 
(e.g. PageRank)

Hybrid engine 
optimized for both 

local gather and 
distributed gather.



GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

PAGE  16



GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hashing the source and 
vertex IDs to assign edges

 Edges (u,v) and (v,u) go to 
the same partition
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GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hashing the source and 
vertex IDs in canonical 
direction to assign edges 

 Edges (u,v) and (v,u) do not 
necessarily go to same 
partition

 Similar to Random of 
PowerGraph/PowerLyra
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GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hash all edges by their 
source vertex

 Ensure all edges with the 
same source are in same 
partition

 Similar to PowerLyra’s
Hybrid’s low degree vertex 
partitioning
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GraphX : Partitioning Strategies
 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Arrange all partitions into 
square matrix 

 Pick column on the basis of 
source vertex’s hash and 
the row on the basis of 
destination vertex’s hash

 Ideal if number of 
partitions = perfect square

 Similar to 
PowerGraph/PowerLyra’s
Grid
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GraphX : Results

 Canonical random for low degree and high diameter graphs 
(e.g. road networks)

 2D Edge Partitioning for power-law like graphs (e.g. 
Enwiki-2013)
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PowerLyra: All Strategies

 HDRF

 1D Edge partitioning

 2D Edge partitioning

 Asymmetric Random (GraphX’s Random)

 1D-Target (new strategy)

 Hash edges by destination vertex and colocate them
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PowerLyra: All Strategies - Results

 No change in PowerLyra’s decision tree

 HDRF same as Oblivious

 Both Asymmetric Random and Random’s performance 
were the worst

 PowerLyra’s Hybrid engine enhances 2D edge partitioning
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Summary

 No best fit for all situations

 Choice depends on:

 Degree of distributed graph

 Type and duration of application

 Cluster size

 Choice significantly affects resource usage and application 
runtime

 Partitioning strategies tightly integrated with underlying 
engine perform better. 
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Discussion

 Why did they choose PowerGraph, PowerLyra and GraphX?

 Was leaving out the PDS partitioning strategy a good idea? 

 PowerGraph can be used with both synchronous and 
asynchronous engines. In the paper, they mentioned that 
they used asynchronous engine for simple coloring, which 
led to longer computation time and higher network I/O 
usage. Why did they not use synchronous engine for it?

 Why did Hybrid-Ginger give such bad performance? 
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Discussion
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