
An Experimental Comparison of
Partitioning Strategies in
Distributed Graph Processing

Presented by: Noshin Nawar Sadat

26-Feb-2019

Graph Processing Systems

PAGE 2

Graph Partitioning

Graph processing systems run in distributed manner to handle
large graphs.

To distribute computations, partition graphs by assigning
graph edges or vertices to individual machines.

PAGE 3

The Problem

Plethora of graph processing systems.

Each offer their own graph partitioning strategies.

Even after user chooses a system, there are different
partitioning strategies to choose from.

PAGE 4

The Problem

Choosing the right partitioning strategy for

distributed graph processing systems

PAGE 5

Why is the problem important?

Choice of partitioning strategy affects

 Performance

 Replication factor

 Completion time (Ingress/Partitioning time, Computation time)

 Resource usage

 Memory usage

 Network I/O

PAGE 6

Paper Contributions

 Experimentally compared partitioning strategies of three
popular distributed graph processing (vertex-cut based)
systems:

 PowerGraph

 PowerLyra

 GraphX

 Presented rules of thumb to help pick partitioning strategies
within each system for different use cases.

 Implemented PowerGraph and GraphX’s strategies into
PowerLyra

PAGE 7

 PowerGraph and PowerLyra

 A local cluster of 9 machines

 EC2 consisting of 16 m4.2xlarge instances

 EC2 consisting of 25 m4.2xlarge instances

 GraphX

 Local cluster of 10 machines

Experimental Methodology : Clusters

PAGE 8

Grid requires number of
partitions to be a perfect

square.

Experimental Methodology : Datasets

 Consisted of:

 Low degree graphs (road-net-CA, road-net-USA)

 Heavy tailed graphs (LiveJournal, Enwiki-2013, Twitter)

 Power-law like graphs (UK-web)

PAGE 9

Experimental Methodology : Metrics

 Ingress time

 Computation time

 Replication factor

 System wide resource usage

 memory consumption

 CPU utilization

 network I/O usage

PAGE 10

Experimental Methodology : Applications

 PageRank

 Weakly connected components

 K-core decomposition

 Single Source Shortest Path (SSSP)

 Simple coloring

PAGE 11

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

PAGE 12

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

 Edge’s hash
= function of its vertices

 Fast

 Parallelizable

 Even edge distribution

 Creates large number of
mirrors

PAGE 12

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

 Based on a greedy heuristic

 Goal : Keep replication
factor low

 Incrementally and greedily
place edges

 Requires some information
about previous assignments

 Not a trivial strategy to
parallelize and distribute

PAGE 12

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

 Hash edges

 Restrict edge placement
based on vertex adjacency:

 Constraint set of vertex
v = S(v)

 Place edge (u,v) in partition
belonging to set S(u) S(v)

PAGE 12

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

 S(v) = all machines in the
row and column of the
machine that v hashed to

 Upper bound for
replication factor: 2 N-1

PAGE 12

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated First
(HDRF)

 Uses PDS to generate
constraint sets

 Requires ()
machines, where p is prime.

PAGE 12

Couldn’t meet requirement
for number of machines of

both Grid and PDS

PowerGraph : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets
(PDS)

 High Degree replicated
First (HDRF)

 Similar to Oblivious

 Assigns edges by looking at
both partition size and
vertex degrees

 Prefers replicating high
degree vertices

PAGE 12

PowerGraph : Results

PAGE 13

 Random partitioning strategy consistently produces highest
replication factor.

PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

PAGE 14

PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 Low degree destinations :
hash destination vertex

 Colocate with all in-edges

 High degree destinations :
hash source vertex

 Colocate with all out-edges

PAGE 14

Gather

Apply

Scatter

GAS Model

PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 Two phases:

1. Performs edge cuts on all
vertices and updates degree
counters

2. Reassignment phase:
performs vertex cuts on the
vertices whose degree is above a
certain threshold

PAGE 14

PowerLyra : Partitioning Strategies

 Random

 Oblivious

 Constrained

 Grid

 Perfect Difference Sets (PDS)

 Hybrid

 Hybrid-Ginger

 A greedy streaming edge-
cut strategy

 Three phases:

1 & 2. Same as Hybrid

3. Put low degree vertex v in
partition which has more of its
in-neighbors

- Gather locally

PAGE 14

PowerLyra : Results

PAGE 15

 Hybrid-Ginger consistently showed slower
ingress and higher memory footprint.

Natural
Applications:
Vertex gathers

from one direction
and scatters to

other directions
(e.g. PageRank)

Hybrid engine
optimized for both

local gather and
distributed gather.

GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

PAGE 16

GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hashing the source and
vertex IDs to assign edges

 Edges (u,v) and (v,u) go to
the same partition

PAGE 16

GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hashing the source and
vertex IDs in canonical
direction to assign edges

 Edges (u,v) and (v,u) do not
necessarily go to same
partition

 Similar to Random of
PowerGraph/PowerLyra

PAGE 16

GraphX : Partitioning Strategies

 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Hash all edges by their
source vertex

 Ensure all edges with the
same source are in same
partition

 Similar to PowerLyra’s
Hybrid’s low degree vertex
partitioning

PAGE 16

GraphX : Partitioning Strategies
 Random

 Canonical Random

 1D Edge Partitioning

 2D Edge Partitioning

 Arrange all partitions into
square matrix

 Pick column on the basis of
source vertex’s hash and
the row on the basis of
destination vertex’s hash

 Ideal if number of
partitions = perfect square

 Similar to
PowerGraph/PowerLyra’s
Grid

PAGE 16

GraphX : Results

 Canonical random for low degree and high diameter graphs
(e.g. road networks)

 2D Edge Partitioning for power-law like graphs (e.g.
Enwiki-2013)

PAGE 17

PowerLyra: All Strategies

 HDRF

 1D Edge partitioning

 2D Edge partitioning

 Asymmetric Random (GraphX’s Random)

 1D-Target (new strategy)

 Hash edges by destination vertex and colocate them

PAGE 18

PowerLyra: All Strategies - Results

 No change in PowerLyra’s decision tree

 HDRF same as Oblivious

 Both Asymmetric Random and Random’s performance
were the worst

 PowerLyra’s Hybrid engine enhances 2D edge partitioning

PAGE 19

Summary

 No best fit for all situations

 Choice depends on:

 Degree of distributed graph

 Type and duration of application

 Cluster size

 Choice significantly affects resource usage and application
runtime

 Partitioning strategies tightly integrated with underlying
engine perform better.

PAGE 20

Discussion

 Why did they choose PowerGraph, PowerLyra and GraphX?

 Was leaving out the PDS partitioning strategy a good idea?

 PowerGraph can be used with both synchronous and
asynchronous engines. In the paper, they mentioned that
they used asynchronous engine for simple coloring, which
led to longer computation time and higher network I/O
usage. Why did they not use synchronous engine for it?

 Why did Hybrid-Ginger give such bad performance?

PAGE 21

Discussion

PAGE 22

